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We analyze the dynamics and statistical mechanics of attractor neural networks with “distributed”
updating rules in which groups of one or more neurons are updated simultaneously. Such partially
parallel updating schemes are a central feature of neural-network architectures that use many pro-
cessors, implemented either on special multiprocessor hardware, or among many computers linked
over a network. Several updating rules are classified and discussed; these rules generalize the par-
allel dynamics of the Little model and the one-at-a-time dynamics of the Hopfield model. Analytic
results presented herein include a stability criterion that specifies sufficient conditions under which
distributed dynamics lead to fixed-point attractors. For binary neurons with block-sequential up-
dating and a Hebbian learning rule, the storage capacity is found as a function of the number of
update groups. Several open problems are also discussed.

PACS number(s): 87.10.4+e, 64.60.Cn, 89.80.+h, 06.50.Mk

I. INTRODUCTION

Neural networks provide a systematic approach to mas-
sively parallel computation. For this reason they offer
great promise for real-time applications where serial com-
puters are too slow to be useful. Interestingly, to date the
vast majority of neural-network applications have been
implemented on single-processor computers, with (artifi-
cial) parallelism created in software. It is generally be-
lieved that this situation is temporary, and that the ul-
timate advantage of massively parallel computation will
require true parallelism in which the computational task
is distributed among a large number of processors, for
instance, by using special purpose hardware or computer
networks.

A concern in designing a parallel, distributed neural
network is the global stability of the collective network
state when many parts of the system are free to change
their state simultaneously. As an example, attractor net-
works configured to store fixed patterns may be globally
stable when the states of single “neurons” are updated
one at a time — foregoing parallelism altogether — but
may possess a large number of spurious oscillatory modes
when all neurons are updated in parallel. In particular,
all of the strong global stability results for sequential up-
dating are constrained by the requirement that no set
of two or more elements change their state at the same
time. This constraint becomes severe when communica-
tion delays or the time required to perform local compu-
tations become comparable to the updating period. In
this regime, standard updating rules break down, and
little is known about the global dynamics.

There is a large body of literature within computer sci-
ence that deals with iterative solutions for systems of lin-
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ear and nonlinear equations using distributed processors.
Global stability has been established for a number of dis-
tributed iteration schemes. Unfortunately, all of these
results require that the system of equations possess a
unique solution. For this reason, these general results are
of limited applicability to neural networks. For attrac-
tor neural networks, the presence of frustration resulting
from competing interactions typically ensures that the
dynamics take place on a complex landscape with many
local minima, corresponding to multiple solutions. In
some sense, this situation is the defining characteristic
of the sort of computational complexity that neural net-
works are designed to cope with.

Ultimately, the goal of this research is to be able to
guarantee stability against oscillations or chaos in a neu-
ral network that has no controlling clock or other form of
central timing (e.g., token passing). In such a distributed
system, each processor would compute and update as
rapidly as possible, and would broadcast its output as
soon as it is available. The results we obtain are not as
general as the results for systems that possess a unique
attractor, and, for instance, do not cover dynamics with
a range of delays and update rates that can lead to over-
lapping, illustrated in Fig. 1. Global stability analysis in
this case remains an open problem.

In the present work, we focus on a discrete-time de-
scription of computational events. Such an approach ap-
plies directly to clocked networks of digital processors.
However, our results will also shed light on continuous-
time systems: As long as the time required for an indi-
vidual neuron to change its state is much shorter than
communication delays and the overall network relax-
ation time, these individual transitions can be considered
quasi-instantaneous.

2155 © 1993 The American Physical Society



2156

The paper is organized as follows. In Sec. IT we develop
a general framework to distinguish various discrete-time
updatinig schemes in neural networks. In Sec. III we in-
troduce a global stability analysis for certain classes of
network dynamics by extending the Lyapunov function
approach to these situations. Quantitative results on the
emergent network properties are presented in Sec. IV.
Finally, conclusions and open problems are discussed in
Sec. V.

II. UPDATING STRATEGIES

A. Single-neuron dynamics

The state or “activity” of a single neuron, say neuron
i, 1 < ¢ < N, is characterized by a scalar variable z;(t)
which may be continuous (i.e., analog) or discrete. In
the latter case, two-state neurons are of particular inter-
est. They were first introduced by McCulloch and Pitts
[1] and will be denoted by S; = %1 to emphasize their
resemblance with Ising spins.

The time evolution of neurons is governed by their local
fields h;(t), weighted sums of incoming signals from other
elements and external sources I;,

N
h(t) =Y Jyzs(t) + L - 1)

=1

Here, the contribution of other neurons to h;(t) is as-
sumed to be linear in their activity level and is mediated
through the interconnection matrix J which we require
to be symmetric, i.e., J;; = Jj;.

The dynamics of a single neuron updated at time ¢ may
either be deterministic or stochastic. In the deterministic
case, we may write

zi(t + 1) = Fi(hi(2)) (2)

with piecewise constant function F; for networks with dis-
crete neurons or continuous transfer function for analog
systems. We will call an input-output characteristic F;
“sigmoidal,” if it is increasing, differentiable, and grows
in magnitude more slowly than linear for large positive
or negative arguments. The maximum slope of F; will be
referred to as the gain 3; of neuron 3.

In the case of stochastic dynamics, we introduce a ther-
mal noise which acts to improve computational perfor-
mance. Also, this noise may be thought of as roughly
incorporating the probabilistic nature of synaptic trans-
mission in biological systems. For binary neurons, the
favorite choice of physicists has been Glauber dynamics,

Prob[Si(t + 1) = +1] = %{1 +tanh [T h;(8)]},  (3)

since it allows for a connection with statistical mechanics
[2,3]. In (3), the “temperature” T characterizes the level
of synaptic noise. In the noiseless limit, 7' — 0, one
recovers the deterministic dynamics S;(t+1) = sgn[h;(¢t)].
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B. Network dynamics

We now turn to the dynamics of the overall network.
First, we consider how many processors may change their
state at a given time. Theoretical investigations of the
global behavior of feedback networks have almost exclu-
sively focused on two extreme cases: parallel updating
of all neurons [2] and one-at-a-time updating [4]. No-
tice that both of these scenarios require a global clock
— in the case of parallel updating, the clock is needed
to synchronize all neurons; in the case of one-at-a-time
updating, the clock prevents the simultaneous updating
of two or more neurons. Few results have been reported
about the convergence and stability of more general mod-
els where groups of neurons are updated in parallel.

The only analytic study along these lines known to the
authors was performed by Chacc, Fogelman-Soulie, and
Pellegrin [5], who focused on block-sequential iterations.
Using a global Lyapunov function, these authors investi-
gated the asymptotic behavior and convergence time of
systems with deterministic threshold units and a fixed
partition into clusters of simultaneously updating neu-
rons. Their stability results will be discussed in Sec. III.

Next, there is the question of how groups (of one or
more neurons) are chosen at each time step. One may
have a fixed partition of the network into groups of neu-
rons [5] — this approach reduces to serial dynamics when
each “group” consists of a single neuron. Alternatively,
one may choose random samples at each time step. Or,
one may use a selective mechanism to optimize network
performance, as has been proposed by Horner, who in-
vestigated a “maximum-field” or “greedy” dynamics [6].
Here, the neuron with the largest local field opposite
to its own activity is picked, allowing for a rapid de-
scent in the energy landscape. The network dynamics of
integrate-and-fire systems may similarly be viewed as a
selective updating algorithm.

Throughout what follows, updating schemes are said
to be fair sampling if on an intermediate time scale no
neuron is skipped for the updating process on average.
The terminology emphasizes the similarity with the idea
of “fairness” used in the computer science literature; see,
e.g., Ref. [7]. On a conceptual level, fair sampling guar-
antees that all neurons have a chance to explore the part
of phase space accessible to them through their single-
neuron dynamics (2) or (3). Obviously most computa-
tionally useful iteration schemes will be of this type. All
updating schemes with a fixed partition or random se-
lection process are fair sampling. However, exceptions
may occur in pathological situations within selective al-
gorithms. On a technical level, the property that the
update rule be fair sampling is important for analyzing
the asymptotic behavior of networks with a distributed
dynamics.

Finally, there is the problem of communication delays
between individual elements. The time evolution of both
real neurons and artificial processors may be strongly in-
fluenced by signal delays due to the finite speed of the
transmission of local information. Neurons will in gen-
eral respond to activity states of other units, some of
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which are already outdated, some not, as is illustrated in
Fig. 1. Problems of this kind have been successfully ad-
dressed in the computer science community under such
terms as “asynchronous algorithms” or “chaotic relax-
ation” [8]. We emphasize, however, that analytical re-
sults obtained for these algorithms do not apply to neu-
ral networks where multiple basins of attraction are vi-
tal for use as an autoassociative memory. On the other
hand, for multibasin systems, encouraging experimental
results have been obtained by Sawitzki and co-workers
[9] using a large array of interconnected personal com-
puters simulating a Hopfield-like neural network. They
have demonstrated that even in a highly complex net-
work with competing interaction and overlapping delays,
the system still settles to a stationary state.

Summarizing the above discussion, updating strategies
for distributed dynamics may be categorized according to
the following four criteria:

(1) Single-neuron dynamics:
stochastic.

(a) deterministic; (b)

(2) Size of group U(t) to be updated at each time step:
(a) all neurons; (b) some neurons; (c) one neuron.

(3) How update group U(t) is chosen at each time step:
(a) fixed partition; (b) random sample; (c) selec-
tive.

(4) Handling of delays: (a) overlapping not allowed; (b)
overlapping allowed.

Most network dynamics appearing in the literature can
be classified by these four criteria. For instance, the Lit-

(a) (b)
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FIG. 1. Schematic representation of various updating

schemes discussed in the text. Horizontal axis represents time.
Delays due to transmission and computation times are indi-
cated by the finite duration of the updating “event” for a
given neuron. Clocked networks have ticks on time axis. (a)
Parallel or synchronous dynamics; (b) sequential or one-at-
a-time dynamics; (c) distributed dynamics, discussed in the
present paper: still clocked, but with arbitrary update groups
at each time step, (d) fully asynchronous dynamics, including
overlapping. Global stability analysis in case (d) remains an
open problem.
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tle model [2] is stochastic [rule (1b], with all neurons
updated at the same time [rule (2a) and (3a)] using in-
stantaneous interactions [rule (4a)]. The Hopfield model
(4] uses either deterministic or stochastic updating on the
single-neuron level [rule (1a) or (1b)], with one neuron
updated at a time [rule (2c)] and no signal delays [rule
(4a)]. In general, neurons may be updated in a random
sequential manner [rule (3b)], but in simulations, the up-
date order is often fixed in advance, corresponding to a
quenched random selection [rule (3a)]. Block-sequential
algorithms for solving coupled nonlinear equations use a
deterministic dynamics with fixed clusters and nonover-
lapping communication [rules (1a), (2b), (3a), and (4a)].
Updating schemes with overlapping delays [rule (4b)] are
usually referred to as asynchronous algorithms.

In the remainder of this paper we will consider an up-
dating scheme that generalizes beyond the Hopfield and
Little models. In particular, we allow both deterministic
and Glauber dynamics on the single-neuron level, and all
choices concerning rules (2) and (3) that are fair sam-
pling. To some extent, we will follow the directions al-
ready investigated within the asynchronous computation
literature, though with the added complication of mul-
tiple basins of attraction that are central to neural net-
works. This complication forces us at present to restrict
our attention to rule (4a)—nonoverlapping updating—as
illustrated in Fig. 1. For the deterministic case [rule
(1a)], the network dynamics is thus defined by a set of
discrete-time equations,

N
s+ =45 ;Jiﬂj(t) + 1| ifiisin U(t),
z;(t) otherwise.
(4)

Our stability analysis can be applied to analog and
discrete-valued neurons, where for the case of binary neu-
rons, we recover earlier results of Goles-Chacc, Fogelman-
Soulie, and Pellegrin [5]. The extension to stochastic
Glauber dynamics will be analyzed in detail in Sec. IV,
and will also help to obtain quantitative results about
the emergent network properties for a system with de-
terministic two-state neurons.

In closing this section, let us mention that an impor-
tant issue excluded in the present analysis — the dynamic
effect and functional role of signal delays — has been ad-
dressed in specific contexts by various authors (see [10]
for an overview). Results concerning the global dynamics
and statistical mechanics for clocked time-delay networks
have been obtained for systems storing both static pat-
terns [11] and temporal associations [12, 13].

III. GLOBAL ANALYSIS
OF THE DETERMINISTIC DYNAMICS

In this section we provide conditions sufficient to guar-
antee that the distributed dynamics as given by Eq. (4)
converge to fixed points only.

Consider the discrete-time evolution of the real scalar
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function L(t),

1 N N
L(t)=—3 > Tzi®)a;(t) + D [Gi(xi(t)) — Lixs(t)]

i,5=1 i=1

()

where the auxiliary quantities G;(x;) are defined by

Giw) = [ “ Fri(2)dz (6)

For sigmoidal F;, the G; increase faster than quadratic for
large absolute argument and guarantee that the function
L(t) is bounded below. Notice that L coincides with the
Lyapunov function used by Marcus and Westervelt to
study the time evolution of iterated-map networks [14]
and with Hopfield’s energy function for the special case
of binary neurons [4].

The change of L(t) in a single time step, defined as
AL;(t) = L;(t + 1) — L;(t) is given by

N
AL(t) = — % S Jiglat + D)5t + 1) — () (0)]

1,j=1

N
+ ) [Gi(mi(t +1) — Gi(zi(2))
i=1
=Li(zi(t +1) — 2:(t))] - (7)

The only neurons that may change their state at time ¢
belong to the update group U(t). Accordingly, Az;(t) =
z;(t+1) —x;(t) vanishes for all other neurons. Using the
symmetry of the connection matrix one obtains

AL(#) = —% S ST JyAzi(t)Ay(t)

€U (t) JEU(t)
N

=D > Jizi(t)Azi(t)
J=1ie€U(t)

+ 3 [Gilwilt + 1)) — Gi(mi(t)) — Lz (1)]
€U (t)

8)

Since sigmoidal F; are single valued and monotone in-
creasing, the G; are strictly convex. Expanding G;(z;(t))
in a Taylor series around z;(t + 1) and replacing the co-
efficient of the quadratic term with the smallest possible

value, i.e., §; ! the following upper bound can be estab-
lished:

< Azi(t)Gi(zi(t + 1)) = [Az()))*B7 . (9)

Notice that equality holds if and only if z;(t + 1) = z;(¢).
For a graphical illustration see [14]. Inserting the identity
Gi(zi(t + 1)) = F7 ' (@it + 1)) = /1, Jiyzs(t) + L
and the above inequality into (8), one arrives at the final
expression
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1 -
AL(t) < -3 Z Z [Ji5 + 6387 "|Azi(t) Az (¢).
i€U(t) jEU ()

(10)

To facilitate further discussion, let us define V'(t) as
the number of neurons in the group U(t) and symmetric
V(t) x V(t) matrices U(t) as V (t)-dimensional submatri-
ces of the connection matrix T, determined by the inter-
actions of those neurons that are updated at time t. For
the Hopfield model [4], where updating is one-at-a-time,
V(t) = 1 for all ¢, and U(t) reduces to the self-interaction
term J;;, where ¢ denotes the neuron being updated at
time ¢. For the Little model [2] or iterated-map analog
networks [14], the matrix is identical to J itself. As is
obvious from these limiting cases, the structure of the
set of matrices U(t) encodes the global dynamics.

We next define the maximum neuron gain in the up-
date group U(t) by B(t) and the minimum eigenvalue
of the matrix U(t) by Amin[U(¢)]. Since for arbitrary
symmetric matrices A and B, Anin[A + B] > Anin[A] +
Amin[B], a sufficient condition for AL(t) < 0 is given by

B! 2 ~Amin[U(D)] - (11)

If the above condition holds for all ¢, L(t) is strictly de-
creasing as long as z;(t + 1) # z;(t) for at least some 7 in
the update group U(t). The function L is bounded be-
low. The dynamics relaxes therefore asymptotically to a
state where L does not vary in time if all directions in the
space spanned by the neural activities are explored, i.e.,
if the updating scheme is fair sampling. Since the equal-
ity in (9) and (10) holds only if z;(t + 1) = z;(t), the
only solutions of (4) with time-independent L are fixed-
point solutions. Earlier results on iterated-map networks
[14] are recovered if U(t) is constant in time and identi-
cal to the set of all neurons. The opposite case, where
analog neurons are updated according to a one-at-a-time
dynamics, has been discussed in Ref. [15].

Our results up to this point can be summarized as fol-
lows: Suppose the following three conditions hold: (a)
the updating rule is fair sampling, (b) the neuron trans-
fer functions are sigmoidal, and (c) the symmetric con-
nection matrix satisfies (11) for all times. Then the dis-
tributed dynamics (4) converges to fixed points only.

Networks with discrete elements correspond to the
limit 8; — oo, and (11) reduces to Amin[U(t)] > 0.
The convergence properties of the models of Hopfield
and Little follow immediately: the Hopfield model has
no time-dependent attractors if the self-interactions J;;
are all positive or zero; the Little model has no time-
dependent attractors if the whole connection matrix
is non-negative definite. The findings of Goles-Chacc,
Fogelman-Soulie, and Pellegrin [5] on block-sequential al-
gorithms correspond to a special intermediate case where
the network is partitioned into fixed updating clusters
Uk, k=0,1,..., K —1 and U(t) = Uy modk)-

We mention a potentially confusing point concerning
the discrete-neuron limit 8; — oco. Whereas for any finite
B, the state space is continuous, it collapses for binary
neurons to the corners of an N-dimensional hypercube,
also known as Hamming space — and to generalizations
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thereof for multistate neurons. In such a discrete space,
the smallest state change is a single spin flip. As a conse-
quence, networks with discrete neurons may converge to
fixed points that are not stable with respect to single-spin
flips, in the sense that a single-bit change made to such a
fixed point could actually lower L. For instance, consider
a Hopfield-like model where for some neuron i, the self-
interaction dominates possible contributions from other
neurons, i.e., Ji; > Ej# |Ji;|: the initial value of S; will
never be changed, independent of its sign. Our earlier re-
sults about network convergence continue to hold, that is,
the system evolves towards fixed points only, but those
may or may not be local minima of L in the discrete-
space sense. This atypical behavior is only possible be-
cause the F; are piecewise constant functions in models
with discrete neurons. For the generic case of sigmoidal
input-output characteristics, the network will always set-
tle in a minimum as long as the initial conditions do not
coincide with an unstable fixed-point of (4).

The comparison between the Hopfield and Little model
demonstrates that the convergence criterion is less re-
strictive for smaller update groups than for larger ones,
as is also obvious from (11) since

)\min[Ul] Z /\min[UZ] if Ul C U2 . (12)

The case of equality in (12) holds if U, is a tensor prod-
uct of U; and some other matrix Uz and Amin[Us] >
Amin[Uz2]. Note that (12) implies in particular that the
stability criterion for a fully parallel network [V (t) = N],
B~ > —AminlJ], is a sufficient condition for (11), and
thus sufficient to assure that the system (4) will converge
to a fixed point for any fair sampling updating scheme.
Formula (12) has direct consequences for possible ap-
plications. Consider a high-dimensional optimization
task such as the traveling-salesman problem. It may
be mapped onto a neural network architecture—see e.g.,
[16]—which then defines a fixed connection matrix J.

FIG. 2.

(a) Example neural-network architecture with 12
neurons belonging to four update groups, represented by four
shapes. Symmetric connections between neurons are repre-
sented by double-arrowed lines, self-connections by looped
arrows. (b) 12 x 12 connection matrix for network in (a),
with filled squares indicating nonzero connection strengths.
The stability criterion (11) places a bound on the minimum
eigenvalues of submatrices corresponding to update groups,
shown as bold 3 x 3 blocks along the diagonal. For many
structured architectures like the planar network in (a), neu-
rons can be judiciously assigned to groups so as to greatly
reduce or eliminate connections within a group.

2159

The computational time needed to find a good solution
can easily be reduced on a parallel computer by increas-
ing the size of update groups. However, the bounds given
by (11) have to be met in order to ensure convergence
to fixed points, and will limit the maximal update group
size. The goal of large updating groups will be achieved in
an optimal way if one can form update groups of weakly
or non-interacting neurons. All submatrices U(t) will
have small off-diagonal elements in that case, and their
eigenvalues will be close or identical to the diagonal el-
ements, i.e., the bounds (11) are largely independent of
the size of the update groups. In principle, the search for
optimal partitions of the above kind is itself a difficult
optimization problem, but many applications exhibit an
intrinsic structure (e.g., predominantly short-range in-
teractions) which naturally leads to good choices for the
updating groups. An example of a network partitioning
is illustrated in Fig. 2.

IV. STATISTICAL MECHANICS
AND NETWORK PERFORMANCE

In this section, we investigate the associative capabil-
ities of neural networks with distributed dynamics. The
networks are designed to store a set of p memory pat-
terns ¢# € {—1,+1}", 1 < u < p as fixed points of the
dynamics (4), and we want to compare the emergent net-
work properties with those of conventional models with
a random sequential or fully parallel dynamics. A statis-
tical mechanical analysis of performance measures such
as storage capacity and retrieval quality can be carried
out most readily if we restrict our attention to networks
that can be partitioned into n fixed update blocks of
equal size V such that there are no interactions within
a group. As emphasized before, such a situation can be
arranged for many applications that map onto diluted or
geometrically structured networks.

To further simplify the analysis, we focus on a system
with zero external input and two-state neurons of Ising
type. We now label neurons by a double index S;,. The
first index 1 < 7 < V refers to the position within an
update group, the second 1 < a < n labels the update
group. As before, the total number of neurons is N =
nV. The connection structure we consider is a Hebb rule
with connections within an update group set to zero:

y4
T = Ty D€l ifa#b

k=1
0 ifa=b.

(13)

The normalization factor in (13) guarantees the correct
scaling behavior of L in the thermodynamic limit N —
oco. In what follows, we will study the case of large update
group size V' — oo with the number of update groups n
kept finite. Also, we require that there be at least two
update groups n > 2, otherwise all neurons would be
disconnected according to (13).

Statistical mechanics may be used to analyze the emer-
gent properties of this block-sequential dynamics once we
have shown that under a stochastic dynamics such as (3),
the network relaxes to a Gibbsian equilibrium distribu-
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tion generated by L. This need not be true in general —
although L is identical to the Hamiltonian of a Hopfield
network of size NV — because the distributed updating
scheme differs from both the Hopfield or Little dynamics
where proofs using the principle of detailed balance are
well established [3]. However, in the special case of van-
ishing connection strength within all update groups (13),
neurons “do not know” about the state of other neurons
in the same group and thus there is no formal difference
between the block-sequential rule considered here and a
serial updating, where neurons change their state in con-
secutive order: every set of V' successive updates of the
latter dynamics is identical to one time step in the former
case.

In what follows, we work with unbiased random pat-
terns where &4 = +1 with equal probability and study
our network at a finite storage level a = limy_,oo(%).
Following the replica-symmetric theory of Amit, Gut-
freund, and Sompolinsky [17], we single out s patterns,
with s finite, and assume that the network is in a state
highly correlated with these memories. The remaining,
extensively many patterns are described collectively by
a noise term. Notice that for coupling matrices of the
form (13), both the overlaps m and spin-glass parame-
ters ¢ have to be defined as order parameters on the level
of the update groups. In light of this requirement, and
considering the retrieval solutions, we make the ansatz

\4
me, = V1 Zg;;sga =mé,1 , (14)
i=1
%4
gl =V SESE = babl6p0 (1 — q) +q] (15)
=1

for a k-fold replicated network, 1< p, o <k, and arrive at
the fixed-point equations

m = ((tanh[T~'{m + Varz}])) (16)
and
g = {(tanh?[T~{m + varz}])) (17)
where
g g(n—1)

TTU-TA P (%)

=1+ T 11— P
Double angular brackets represent an average with re-
spect to both the condensed patterns and the normalized
Gaussian random variable 2.

The preceding equations closely resemble their coun-
terparts for the Hopfield model [17], and become identical
to them in the limit of large n, i.e., many update groups.
On a formal level, the same holds for n = 1, but as ex-
plained before, this case corresponds to an unphysical
situation. For a general number of update groups, there
exists a first-order phase transition at T = 0 between
the retrieval state and a spin-glass phase as « is var-
ied. The critical storage level a, and the corresponding
overlap m. are shown below. In passing, let us remark
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that there is also a high degree of similarity between the
fixed-point equations (16) — (18) and results obtained for
time-delay networks [12]. This is not surprising since the
latter class of model can be mapped onto networks with
block-sequential updating and no time delays.

We now introduce a third performance measure, the
information content Ir(n), measured per synapse and rel-
ative to that of a Hopfield model,

In(Block—sequential) _ naq(n)
I(random-sequential) ~ (n — 1)a.(Hopfield)

(19)

Ir(n) =

where as before n counts the number of updating groups.
A numerical solution of the saddle-point equations at
T = 0 leads to the following results:

n ac Me Ir
2 0.100 0.93 1.45
3 0.110 0.95 1.20
4 0.116 0.96 1.12
5 0.120 0.96 1.09

Compared to the Hopfield or Little model where o, =
0.138, and m, = 0.97, our block-sequential updating
scheme exhibits quantitatively similar performance: the
capability to retrieve stored random patterns is slightly
lower when measured in terms of patterns per neuron —
see the second column — and slightly higher when mea-
sured in terms of patterns per synapse — see the last
column. Notice in particular, that the information con-
tent increases with decreasing network connectivity, i.e.,
for small n.

The above findings clearly indicate that the associative
capabilities of networks with a distributed dynamics are
rather similar to those of systems with either fully paral-
lel or one-at-a-time updating rules. Unlike these conven-
tional schemes, they offer a potentially large advantage
in terms of computational costs when implemented on a
parallel computer, allowing for a speed-up that may be
as large as the number of processors, without sacrificing
network stability.

V. CONCLUSIONS AND OPEN PROBLEMS

We have studied the global dynamics of neural net-
works with a distributed updating scheme. We have
shown that dynamics with a deterministic single-neuron
time evolution and nonoverlapping communication de-
lays converge to a fixed point attractor if three conditions
hold: First, the process of selecting update groups has to
be fair sampling, that is, no neurons may be neglected (on
average) by the updating rule. Second, the neuron trans-
fer functions must be sigmoidal, as is the case for most
implementations in analog hardware. Third, the connec-
tion matrix has to be symmetric and in addition sat-
isfy the stability criterion (11), a constraint that can be
naturally met in many applications, particularly where
limited-range interactions play a dominant role. For a
discussion of biological aspects of the present model, see
Ref. [18].
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We have also investigated the stochastic Glauber dy-
namics of two-state neurons in a distributed updating
scheme and discussed the equilibrium statistical mechan-
ics for this case. Within a replica-symmetric theory,
quantitative measures of emergent network properties
were obtained. They showed that both the storage ca-
pacity and information content are similar to those of the
Hopfield model. Given the significant computational ad-
vantage of block-sequential updating schemes, their in-
herent ability to be run in parallel, we concluded that
distributed dynamics offer a promising perspective for
many applications.

The statistical mechanical analysis in Sec. III fo-
cused on two-state neurons and a block-sequential update
scheme. It would be interesting to investigate the gen-
eral conditions on the coupling matrix under which the
stochastic dynamics will relax to an invariant probabil-
ity distribution determined by L. Similarily, one might
want to study different thermodynamic limits, where, for
instance, the number of neurons per update group stays
fixed while the number of clusters grows to infinity. Fi-
nally, systems with continuous neurons could be analyzed
using techniques developed by Kiihn and co-workers [15].

There are a number of important questions that we
have not addressed in the present work: For instance,
given the generality of the results reported here, one
might want to optimize the updating scheme to further
decrease the computational time. We have discussed
a first step into this direction at the end of Sec. IIL
One could go further, however, and investigate updating
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schemes where the group sizes are changed in a selective
manner during the descent on the energy landscape so
as to minimize the time to reach a deep minimum while
avoiding shallow local minima. It would also be inter-
esting to investigate the consequences of violating condi-
tion (11). It is known [5, 14] that for a parallel updating
scheme, violating (11) generates only simple period-two
attractors. One might expect, however, that a variety
of complicated dynamic attractors could appear in a dis-
tributed updating scheme when (11) is violated. Further-
more, it is possible in this case that the resulting chaotic
dynamics could be used as an effective noise source sim-
ilar to that of stochastic dynamics. One may even try
to control these violations in a supervised manner by
changing the update group size, as has been proposed
for Monte Carlo simulations [19].
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